Representasi Siswa Yang Bergaya Kognitif Reflektif Dalam Memecahkan Masalah Pola Bilangan

  • Sadrack Luden Pagiling Universitas Musamus Merauke
Keywords: representasi;gaya kognitif; reflektif; pola bilangan

Abstract

Penelitian deskriptif dengan pendekatan kualitatif ini bertujuan untukmendeskripsikan representasi matematis siswa dalam memecahkan masalah pola bilangan. Seorang siswa perempuan reflektif menjadi subjek penelitian yang dipilih berdasarkan hasil tes penggolongan gaya kognitif. Data dikumpulkan dengan memberikan tugas pemecahan masalah pola bilangan dan wawancara berbasis tugas. Untuk menguji kredibilitas data, peneliti melaksanakan triangulasi data. Peneliti memberikan tes dan melakukan wawancara pada waktu yang berlainan. Temuan penelitian mengindikasikan bahwa representasi matematis siswa yang bergaya kognitif reflektif dalam memecahkan masalah pola bilangan, meliputi (a) mengenali dan menyajikan informasi yang diketahui secara visual, (b) mengungkapkan rencana atau strategi pemecahan masalah menggunakan representasi verbal dan visual, (c) mengungkapkan manipulasi model matematika yang memuat ekspresi matematika dan mengungkapkan interpretasi hasil penyelesaian secara verbal, dan (d) menelusuri solusi yang sudah diperoleh menggunakan representasi visual.

References

Al-Silami, T. A. (2010). A Comparison of Creative Thinking and Reflective-Impulsive Style in Grade 10 Male Students from Rural and Urban Saudi Arabia. School of Education, Faculty of Arts, Education, and Human Development. Victoria University. Retrieved from https://core.ac.uk/download/pdf/10834550.pdf

Edens, K., & Potter, E. (2008). How Students “Unpack” the Structure of a Word Problem: Graphic Representations and Problems Solving. School Science & Mathematics, 108(5), 184–196. https://doi.org/10.1111/j.1949-8594.2008.tb17827.x

Goldin, G., & Shteingold, N. (2001). System of mathematical representations and development of mathematical concepts. In A. A. Cuoco (Ed.), The Roles of Representation in School Mathematics (pp. 1–23). Reston, Virginia: National Council of Teachers of Mathematics.

Irianto, M. S. Q., & Nur, A. S. (2019). Penerapan Model Pembelajaran Kooperatif Tipe TGT Berbantuan Aplikasi Geogebra Untuk Meningkatkan Kemampuan Pemecahan Masalah Matematika. Magistra : Jurnal Keguruan Dan Ilmu Pendidikan, 6(1), 1–9.

Izsak, A. (2003). “We want a statement that is always true”: Criteria for good algebraic representations and the development of modeling knowledge. Journal for Research in Mathematics Education, 34(3), 191–227. https://doi.org/10.2307/30034778

Kagan, J. (1965). Reflection-Impulsivity and Reading Ability in Primary. Child Development, 36(3), 609–628.

Mielicki, M. K., & Wiley, J. (2016). Alternative Representations in Algebraic Problem Solving: When are Graphs Better Than Equations? The Journal of Problem Solving, 9(1), 3–12. https://doi.org/10.7771/1932-6246.1181

Moleong, L. J. (2011). Metodologi Penelitian Kualitatif (Revisi). Bandung: PT Remaja Rosdakarya. https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004
National Council of Teachers of Mathematics. (2000). Principles and Standards fir School Mathematics. Reston, Virginia: National Council of Teachers of Mathematics.

Nurhayati, Meirista, E., & Suryani, D. R. (2019). Pengaruh Penggunaan Geogebra Terhadap Kemampuan Pemecahan Masalah Matematika. Magistra : Jurnal Keguruan Dan Ilmu Pendidikan, 6(2), 74–82.

Pagiling, S. L. (2017). Representasi Matematis Siswa Kelas VII yang Bergaya Kognitif Reflektif dan Impulsif dalam Memecahkan Masalah Matematika. Universitas Negeri Surabaya.

Panasuk, R. M., & Beyranevand, M. L. (2010). Algebra Students’ Ability to Recognize Multiple Representations and Achievement. International Journal for Mathematics Teaching and Learning. Retrieved from http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ904885

Pitta-pantazi, D., & Christou, C. (2009). dynamic Cognitive geometry and measurement performance. Educational Studies in Mathematics, 70(1), 5–26. https://doi.org/10.1007/sl0649-008-9139-z

Polya, G. (1973). How to Solve It: a New Aspect of Mathematical Method. (Princeton). New Jersey: Princeton University Press.

Selling, S. K. (2016). Learning to represent, representing to learn. Journal of Mathematical Behavior, 41, 191–209. https://doi.org/10.1016/j.jmathb.2015.10.003

Stylianou, D. A. (2011). An examination of middle school students’ representation practices in mathematical problem solving through the lens of expert work: Towards an organizing scheme. Educational Studies in Mathematics, 76(3), 265–280. https://doi.org/10.1007/s10649-010-9273-2

Yee, S. P., & Bostic, J. D. (2014). Developing a contextualization of students’ mathematical problem solving. Journal of Mathematical Behavior, 36, 1–19. https://doi.org/10.1016/j.jmathb.2014.08.002

Zahner, D., & Corter, J. E. (2010). The process of probability problem solving: Use of external visual representations. Mathematical Thinking and Learning, 12(2), 177–204. https://doi.org/10.1080/10986061003654240
Published
08-10-2019
How to Cite
Pagiling, S. (2019). Representasi Siswa Yang Bergaya Kognitif Reflektif Dalam Memecahkan Masalah Pola Bilangan. Musamus Journal of Mathematics Education, 2(1), 1-11. https://doi.org/10.35724/mjme.v2i1.1964