

# Feasibility of karisjaya egg-laying chicken agribusiness (case study approach)

Ristina Siti Sundari<sup>1\*</sup>, Fatimah Fajria Supriadi<sup>1</sup>, Dona Setia Umbara<sup>1</sup>

## AFFILIATION

<sup>1</sup>Fakultas Pertanian, Universitas Perjuangan, Indonesia

\*Korespondensi:

[ristina.sitisundari@yahoo.com](mailto:ristina.sitisundari@yahoo.com)

## ABSTRACT

Agribusiness is a unitary business activity that includes one or the entire production chain, product processing, and marketing, broadly concerning agriculture. This study aimed to calculate the feasibility of an independent laying chicken agribusiness that experiences production fluctuations. The study's results stated that the operating costs required for 10 years are IDR. 921,080,000. The income received by the laying chicken farmer Mr. Cucu Suryana in carrying out his laying chicken agribusiness is IDR 603,474,200 per two years of production. The NPV using a social discount rate of 18% shows that the NPV in strata I is IDR 74,808,684. The IRR shows a result of 21.24% using the Social Opportunity Cost of Capital (SOCC) of 18.00%; this means that  $IRR > SOCC$ , the investment made by farmers will return within 3.11 years, and Net B/C is 1.21%. So, the effort is worth continuing.

**KEYWORDS:** Business Feasibility, Acceptance, Expenditures, Operating Costs, Laying Chicken

## ABSTRAK

Agribisnis merupakan suatu kesatuan kegiatan usaha yang meliputi salah satu atau keseluruhan dari mata rantai produksi, pengolahan hasil dan pemasaran yang ada hubungannya dengan pertanian dalam arti luas. Tujuan penelitian ini adalah untuk menghitung kelayakan agribisnis ayam petelur mandiri yang mengalami fluktuasi produksi. Hasil penelitian menyatakan bahwa biaya operasi yang dibutuhkan selama 10 tahun adalah sebesar Rp. 921.080.000. Pendapatan yang diterima oleh peternak ayam petelur Bapak Cucu Suryana dalam melakukan kegiatan usaha peternakan ayam petelur yaitu sebesar Rp. 603.474.200 per dua tahun produksi. NPV menggunakan social discount rate 18% menunjukkan bahwa NPV pada strata I adalah Rp. 74.808.684. IRR menunjukkan hasil 21,24% dengan menggunakan Sosial Opportunity Cost of Capital (SOCC) sebesar 18,00%, ini berarti  $IRR > SOCC$ , investasi yang dikeluarkan oleh peternak akan kembali dalam jangka waktu 3,11 Tahun, Net B/C adalah 1,21%. Maka usaha tersebut layak diteruskan.

**KATA KUNCI:** Kelayakan Usaha; Penerimaan; Pengeluaran; Biaya Operasi; Ayam Petelur

Diterima: 17-11-2024

Disetujui: 02-01-2025

## COPYRIGHT @ 2025 by

**Agricola: Jurnal Pertanian.**

This work is licensed under a  
Creative Commons Attributions  
4.0 International License

## 1. INTRODUCTION

Laying chicken production increased from 2015 to 2019, with the largest increase reaching 58% or 654,115 tons in 2017, but in 2020, laying chicken production decreased by 6% or 244,456 tons (BPS, 2021). The decline in laying chicken production was caused by excessive supply from laying chicken companies and suppliers, resulting in decreased purchasing power (Wirabratra, 2019). The laying chicken business has a business pattern based on its own or external capital, which supplies and sells. The risks incurred are borne by themselves, and businessmen tend to use their capital regarding their business. Still, egg distribution requires cooperation with other parties as a marketing medium to achieve optimal revenue (Iskayani et al., 2016).

The chicken poultry consisted of layer chickens and broiler chickens. That business has two patterns: independent patterns and partnership patterns. Independent patterns result in the supply of production facilities and marketing activities being carried out by oneself so that the risks incurred are borne by oneself, while partnership patterns are patterns that are built based on cooperation agreed upon by both parties, both from the company as the core and the farmers as plasma (Febrianto et al., 2019).

Karisjaya's egg-laying chicken agribusiness, especially in Tasikmalaya City, has a location for developing egg-laying chickens at the farm owned by Mr. Cucu Suryana, who holds an essential position in development in the poultry sector. This can be seen from the company's good and smooth operation, managed by ± 12,500 heads in 2021. Until now, he has maintained his business in Bungursari, Tasikmalaya City, West Java Province.

The risk accepted by farmers is the high price of input (Ramadhan et al., 2018). Egg-laying chicken agribusiness is located in each district in Tasikmalaya City. Tchicken, regarding the number of egg-laying chickens in the Cibunigeulis area, Bungursari District, Tasikmalaya.

Karisjaya egg-laying chicken farm in early 2017 carried out production activities with independent capital so that the farmer also bore the costs incurred and risks the laying chicken bear from preparation to marketing the chickens. Instead of raising laying chickens using the partnership method (Fadhil, 2017; Mi'raj et al., 2021; Siddiq & Nur, 2023).



**Figure 1.** Income Growth. Source: Karisjaya Layer Chicken (2023)

The table shows a decline for 2 consecutive years caused by changes in cost burdens, so a feasibility calculation is needed to help Karisjaya in making decisions about the egg-laying chicken agribusiness plan that will be carried out. Regulation of the Minister of Agriculture of the Republic of Indonesia Number 31 / Permentan / OT.140 / 2/2014 concerning profitability to assess the size of a company's profit or determine whether a business is feasible to be implemented (Mappa et al., 2022). Thus, reviewing and re-examining the feasibility of the Karisjaya egg-laying chicken agribusiness is necessary. This research is limited to financial feasibility. This research does not consider the market, technical, and managerial aspects.

## 2. MATERIALS AND METHODS

### 2.1. Study Area

As a case study approach, the research location was conducted at the single enterprise of Karisjaya egg-laying chicken agribusiness in Cibunigeulis, Bungursari District, Tasikmalaya City. The research location was chosen purposively because the research subjects could provide support in the form of research data that could support the research. This research started from September 2023 to January 2024.

### 2.2. Research Design

The research design uses the descriptive analysis method. The analysis method collects, classifies, analyzes, and implements available data (Gani & Amalia, 2014). This analysis technique determines the income, revenue, and production costs of Karisjaya egg-laying chicken. Operationalization of variables used in this study which can be operationalized as follows:

#### 1. Investment costs

Investment costs are incurred to obtain fixed assets the company will use to run its business activities. The details of investment costs are.

- a. Land rent: Land rent is a surplus of income above the cost of land that allows land production factors to be utilized.
- b. Making chicken coops: This is the process by which chickens will produce eggs to be distributed to the market.
- c. Purchase of chicks (DOC): Purchase of laying chicken seeds ready to produce good eggs.
- d. Purchase of livestock equipment: Providing supporting tools on laying chicken farms.

- e. Battery: This tool measures farm temperature and other things.
- f. Feeding place: This is one of the chicken or poultry agribusiness equipment that provides chicken and poultry feed in a modern way.
- g. Socket: This tool connects electrical lines for farm heaters.
- h. Jug: This tool puts chicken eggs so they do not break.
- i. Bucket: It is used to draw water from the well, pour it into the barrel, and move water from the tap or water reservoir to remain in the barrel and the water hole.
- j. Drum: It is used as a place to store composting or can be used for dead poultry or feed.

2. Operational costs

Operational costs are costs required by the company to carry out business activities. These costs include salary interests, commissions, team member benefits, equipment, repairs, and rental costs.

- a. Feed: Feed is a source of energy and material for the growth and life of living things. The most essential substance in feed is protein.
- b. Electricity: Electricity is energy that can be distributed through conductors in the form of cables. The presence of electric current is due to the electric charge flowing from the positive channel to the negative channel. In human life, electricity plays a very important role. Electricity in poultry agribusiness is used as lighting.
- c. Vitamins: Vitamins play a role in maintaining and increasing body strength. Vitamins play a role in improving livestock health, especially in production.
- d. Vaccines: Animal vaccination is vaccination or giving vaccines to animals to help the animal's immune system develop protection against disease.
- e. Medicines: Medicines are preparations that can treat animals, relieve symptoms, or modify chemical processes in the body, including biological preparations, pharmaceutics, premixes, and natural animal drug preparations.
- f. Gas: As a medium for producing fire.
- g. Maintenance of mother chicken (Labor): Labor is anyone who can do work to maintain laying chicken.

3. Egg production

Laying chickens have the potential to produce more than 500 eggs within 700 days (100 weeks). When chickens reach the age of 140 days, this production can reach 50%; when they reach the peak age, the maximum layer production can reach 98%.

4. Selling price

The selling price is the value reflected in the price list, retail price, and the price is the final value received by the company as income or net price

5. Revenue

Revenue is the total income the producer receives in the form of money obtained from the sale of goods produced.

6. Business Profit

This is the profit obtained by the company. The profit is the amount of total income minus the production or operational costs incurred by the company. Profit is also often known as profit.

7. Net Profit:

Net profit is the profit remaining after deducting all costs associated with business operations, including taxes. Net profit is the most accurate measure because it considers all costs associated with business operations.

**2.3. Data Analysis**

1. Cashflow

Cash flow is a financial report needed to track every cash inflow and outflow to produce an excellent financial analysis of whether there is an increase or decrease in the Karisjaya Egg-Laying Chicken Agribusiness during a period to finance the business activity process (Table 1).

2. Operational Cost

Operational costs are costs required by the company to run business activities. These costs include feed, electricity, vitamins, vaccines, medicines, gas, and maintenance of the mother chicken (labor).

**Table 1.** Cashflow Karisjaya Egg-Laying Agribusiness

| Description                       | Year |     |     |     |     |     |     |     |     |     |
|-----------------------------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                                   | 1    | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
| <b>Investment Cost</b>            |      |     |     |     |     |     |     |     |     |     |
| 1. Land Rent                      | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| 2. Making Chicken Coops           | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| 3. Buying Chicks (DOC)            | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| 4. Buying Farming Equipment       | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| a. Battery                        | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| b. Feeder                         | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| c. Drinker                        | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| d. Socket                         | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| e. Jug                            | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| f. Bucket                         | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| g. Semawar                        | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| <b>Operational Cost</b>           |      |     |     |     |     |     |     |     |     |     |
| a. Feed                           | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| b. Electricity                    | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| c. Vitamine                       | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| d. Vaccine                        | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| e. Medicine                       | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| f. Fuel                           | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| g. Maintenance of Chicken (Labor) | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| <b>Total Operational Cost (B)</b> |      |     |     |     |     |     |     |     |     |     |
| <b>Egg Production</b>             | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| <b>Selling Price</b>              | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| <b>Revenue</b>                    | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| <b>Business Profit</b>            | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |
| <b>Net Profit</b>                 | IDR  | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR | IDR |

### 3. Income

Income can be in the form of goods and money from industry and other people, measured based on the prevailing money at that time, which is a person's survival directly and supports daily needs indirectly (Wibowo, 2009). Income from the Karisjaya agribusiness is from egg sales. The formula for income in agribusiness is:

$$\Pi = TR - TC \quad (1)$$

Where:

$\Pi$  : Income of egg sales

TR : Total Revenue of egg sales

TC : Total cost of egg production

### 4. Egg-laying Agribusiness Feasibility Analysis

The data used is on the amount of income, loans, and investments made by farmers. Data processing is analyzed using the following equation (Santa et al., 2020).

- NPV provides a projection of business or investment profits by calculating estimated future cash flows and adjusting them to current cash flows.

$$NPV = \sum_{t=1}^n \frac{B_t - C_t}{(1+i)^t} \quad (2)$$

Where:

$B_t$  : Benefits in year t

$C_t$  : Costs in year t  
 $i$  : Discount interest rate (DF)  
 $n$  : Economic life  
 $t$  : Year t

b. Internal Rate of Return (IRR)

IRR is an indicator that determines the level of efficiency of an investment. IRR is a method to calculate the interest rate of an investment and equate it to its current value based on the calculation of net cash in the future period.

$$IRR = i1 + \frac{NPV_1}{NPV_1 - NPV_2} x (i2 - i1) \quad (3)$$

Where:

$IRR$  : Internal Rate of Return  
 $NPV_1$  : NPV positive value  
 $NPV_2$  : NPV negative value  
 $i_1$  : NPV positive value  
 $i_2$  : NPV negative value

c. Payback Period (PP)

PP is a way to determine the length of time to return capital. Payback period calculations help companies make investment decisions. The shorter the payback period, the more the investment product is in demand. The reason is that the opportunity to turn capital is higher. The formula for calculating the Payback Period is as follows:

$$PP = \frac{\text{Remaining Investment}}{\text{current year process}} \quad (4)$$

Feasibility criteria:

- a. If PP is shorter than the maximum payback period, the business is feasible to run
- b. If PP is longer than the maximum payback period, the business is not feasible to run

d. Net B/C

Net B/C is the ratio between the number of positive NPV and the number of negative NPV. Net B/C shows how many times the benefits will be obtained from the costs that have been incurred. A project is declared profitable or feasible if the Net B/C Ratio value is more significant than one.

$$Net B/C = \frac{\sum PV_+}{\sum PV_-} \quad 100\% \quad (5)$$

Where:

$Net B/C$  : Net benefit-cost ratio  
 $\sum PV_+$  : Present value positive  
 $\sum PV_-$  : Present value negative

Eligibility Criteria:

- a.  $Net B/C > 1$  business is feasible to run
- b.  $Net B/C < 1$  business is not feasible to run
- c.  $Net B/C = 1$  business has BEP
- e. Sensitivity

A test of a decision to determine how much inaccuracy in using an assumption can be tolerated without making the decision invalid. Sensitivity analysis aims to see what will happen to the project analysis results if there is an error or change in the basis for calculating benefits or costs.

In operating a planned business, it is undeniable that price increases can cause errors in calculations or calculations that are different from reality. Sensitivity analysis examines the effects of two changes in factors on the NPV value that can occur during the production process. The two factors observed are

changes in input prices and production. Changes greatly influence the acceptance of laying chickens in production levels. When total production increases so do the NPV value, and vice versa.

Sensitivity analysis components:

- Against changes in operating cost increases

Because the price of operating costs that increase yearly is not satisfactory for farmers, it is clear from the trend of 5% of national chicken egg production (Kemendag, 2021) Whether this business is feasible.

- Regarding changes in operating costs

Fluctuating operating costs are also factors when chickens operate a roaring chicken business. So, if the operating costs decrease by 5%, it will be calculated based on the market supervision system and basic needs (Kemendag, 2021).

- If you experience scenario 1 and scenario 2 simultaneously, is it a viable business?

$$Sensitivity = \frac{\text{Positively true}}{\text{Positively true} + \text{Negatively False}} \times 100\% \quad (6)$$

### 3. RESULT AND DISCUSSION

#### 1. Egg-laying agribusiness characteristic of respondent

Karisjaya laying chicken farm is managed by Mr. Cucu Suryana, who is 58 years old and has a long business period of 17 years, starting from 1000 laying chickens to 12,000 laying chickens at the highest value. However, the average per year is 5,000 laying chickens. The laying chicken maintenance is planned in stages, with a maintenance period that increases within six months by 1,000 chickens. The results of the market aspect study show that the demand for egg products has a seasonal nature that occurs every year. This condition affects the amount of demand and makes the price of eggs fluctuate every year.

#### 2. Operational Cost

Operational costs are required to run production activities and are routinely incurred during production (Purnama et al., 2021). For more details on the operational costs incurred by laying chicken farmers, see Table 3.

**Table 2.** Operational Costs

| No                              | Description       | Unit                | Amount | Price/Unit (IDR) | Production year I - IX |
|---------------------------------|-------------------|---------------------|--------|------------------|------------------------|
| 1                               | Feed              | Kg                  | 21.000 | 4.153            | 87.213.000             |
| 2                               | Vitamine/month    | Unit/ 1.000 chicken | 21     | 5.000            | 105.000                |
| 3                               | Vaccine/semester  | Bottles             | 2      | 1400.000         | 840.000                |
|                                 |                   |                     |        | 20.000           |                        |
|                                 |                   |                     |        | 420.000          |                        |
| 4                               | Medicine/3 months | Unit/ 1.000 chicken | 3      | 150.000          | 450.000                |
| 5                               | Labor             | Month               | 7      | 500.000          | 3.500.000              |
| <b>Total (IDR)</b>              |                   |                     |        |                  |                        |
| <b>2 years Production (IDR)</b> |                   |                     |        |                  |                        |
| <b>10 years (IDR)</b>           |                   |                     |        |                  |                        |

Based on Table 2, it is known that the operating costs for two years of production are 184,216,000 IDR. Operating costs are costs required by poultry to run business activities. These costs include feed, electricity, vitamins, vaccines, medicines, gas, and maintenance of parent chickens (labor). Operating costs are very sensitive to changes, especially the price of feed and others constantly fluctuate; this will affect the increase in operating costs. The operating costs required for 10 years are 921,080,000 IDR.

#### 3. Investment Cost

Investment costs are incurred to finance business activities at the beginning of the business, and the amount is quite large. Below are the investment costs for Karisjaya egg-laying Chicken Agribusiness.

**Table 3.** Investment Costs

| No                           | Description                                                              | Volume | Unit    | Price/Unit (IDR) | Amount (IDR)     |
|------------------------------|--------------------------------------------------------------------------|--------|---------|------------------|------------------|
| 1                            | Land rent                                                                | 10     | Year    | 4.500,000        | 45,000,000       |
| 2                            | Making a chicken coop                                                    | 1      | Pcs     | 36,000,000       | 36,000,000       |
| 3                            | Purchase of chicks (DOC)                                                 | 1,000  | Chicken | 5,000            | 6,000,000        |
| 4                            | Purchase of livestock equipment                                          |        |         |                  | -                |
|                              | Battery                                                                  | 1,000  | Pcs     | 6,400            | 6,400,000        |
|                              | Battery feeder                                                           | 25     | Bar     | 15,000           | 375,000          |
|                              | Battery drinker                                                          | 80     | Lente   | 11,000           | 880,000          |
|                              | Open feeder                                                              | 20     | Pcs     | 23,000           | 460,000          |
|                              | Open drinker                                                             | 20     | Pcs     | 15,000           | 300,000          |
|                              | Socket                                                                   | 80     | Pcs     | 2,000            | 160,000          |
|                              | Jug                                                                      | 20     | Pcs     | 2,000            | 40,000           |
|                              | Bucket                                                                   | 4      | Pcs     | 20,000           | 80,000           |
|                              | Drum                                                                     | 2      | Pcs     | 150,000          | 300,000          |
|                              | Open                                                                     | 1      | Pcs     | 200,000          | 200,000          |
|                              | <i>Semawar</i>                                                           | 1      | Buah    | 120,000          | 120,000          |
|                              | Hose                                                                     | 3      | Meter   | 10,000           | 30,000           |
| 5                            | Maintenance of chicks (DOC)<br>Until the chicken is ready to lay<br>eggs |        |         |                  |                  |
|                              | Husk                                                                     | 60     | Sack    | 1.500            | 90.000           |
|                              | Electricity                                                              | 3      | Month   | 30.000           | 90.000           |
|                              | Feed (starter and grower)                                                | 10.000 | Kg      | 5.000            | 50.000.000       |
|                              | Vitamins                                                                 | 1.000  | Chicken | 4.000            | 4.000.000        |
|                              | Vaccines                                                                 | 1.000  | Chicken | 4.000            | 4.000.000        |
|                              | Gas                                                                      | 10     | Gallon  | 15.000           | 150.000          |
|                              | Labor                                                                    | 5      | month   | 500.000          | 2.500.000        |
| <b>Total Investment Cost</b> |                                                                          |        |         |                  | <b>157.175.0</b> |

#### 4. Income

Karisjaya farm income is from egg sales. Operating income is operating income minus total costs. Income can be in the form of goods and money from poultry and other people, measured based on the currency in force at that time, which is a person's direct survival and supports daily needs indirectly (Santa et al., 2020).

**Table 4.** Income

| Commodity                 | Unit          | Production | Sale Price/kg (IDR) | Revenue (IDR)      |
|---------------------------|---------------|------------|---------------------|--------------------|
| Eggs                      | Kg            | 25.974     | 20.000              | 519.474.200        |
| Chicken                   | Kg            | 2.000      | 22.000              | 44.000.000         |
| Manure s                  | Lump sum/year | 2          | 20.000.000          | 40.000.000         |
| <b>Total revenue (Rp)</b> |               |            |                     | <b>603.474.200</b> |

Based on Table 4, the income from egg-laying chicken farmers in carrying out egg-laying chicken agribusiness activities is IDR. 603,474,200 per two years of production, but if for 10 years, it is 3,017,371,000 IDR. The following is the business income received by Karisjaya in carrying out egg-laying chicken agribusiness activities.

$$\begin{aligned}
 \pi &= TR - TC \\
 &= 603.474.200 \text{ IDR} - 184.216.000 \text{ IDR} \\
 &= 419.258.200 \text{ IDR}
 \end{aligned}$$

The income received by farmers in running an egg-laying chicken agribusiness during one production period is 419,258,200 IDR if there are no diseases that attack the chickens and cause a decrease in egg production.

## 5. Feasibility Egg-laying agribusiness

The feasibility of the Karisjaya egg-laying chicken farm business is shown in Table 5.

**Table 5. Feasibility**

| Financial Criterium | Value          | Classification |
|---------------------|----------------|----------------|
| NPV (18%)           | 74.808.684 IDR | Feasible       |
| IRR                 | 21,24%         | Feasible       |
| Net B/C             | 1,21           | Feasible       |
| PP                  | 3,11           | years          |

### 1. Net Present Value (NPV)

Net Present Value (NPV) is a present value from the benefit difference with cost on a specific discount rate (Hasbi & Tunggal, 2021). The discount rate was based on inflation in 2022 at 4% (P.Subarkah et al., 2022). The results of the NPV calculation using a social discount rate of 18% show that the NPV in stratum I is 74,808,684 IDR, and stratum II is 31,220,387 IDR at a 21% social discount rate. The egg-laying chicken agribusiness in each stratum is feasible to develop because the NPV value is more than 0 (zero). This aligns with the research (Oman et al., 2023) . Where the NPV value obtained is greater than 0, which is 32,241,500 IDR, it can be said that the business is feasible to run because it can cover the costs incurred by the farmers.

### 2. Internal Rate of Return

The IRR calculation shows a result of 21.24% using the Social Opportunity Cost of Capital (SOCC) of 18.00%, which means that  $IRR > SOCC$ ; thus, the project is feasible to work on. Ibrahim (2019) stated that if the IRR calculation result is greater than the Social Opportunity Cost of Capital (SOCC), it is said that the project/business is feasible to develop. If it is the same as SOCC, it means that the principal is returned, and below SOCC, the project is not feasible to be developed. This is also in line with the research (Elpawati et al., 2018). The IRR value obtained was 44.21%, so it can be concluded that the business is feasible to run because the value is greater than the bank interest rate.

### 3. Payback Period

Payback Period is a calculation to measure the period required to return the money invested from the annual cash flow generated by the investment project. Based on Table 2, it can be concluded that the investment issued by the farmer will be returned within 3.11 years. This means that the payback period is shorter than the maximum payback, so the broiler chicken agribusiness is feasible. This is in line with the research (Santosa et al., 2012), The PP value obtained was small from the age of the business activity project for 2 years or 10 months and 6 days, so it can be said that the business is feasible to run.

### 4. Net B/C

The results of the Net B/C calculation of the laying chicken agribusiness in Bungursari District, Cibunigeulis Village, in Table 8, the results of the Net B/C calculation are 1.21; this shows that the egg-laying chicken agribusiness is feasible to be carried out. Based on the formula and calculation results above, if  $Net\ B/C > 1$  means the project is feasible to be carried out; if  $Net\ B/C < 1$ , it is not feasible, and if  $Net\ B/C = 1$ , the break-even point is reached, in this case, it depends on the investor. Research (Santosa et al., 2012), also showed consistent results, where the Net B/C value obtained was more than 1, which was 1.25, so the egg-laying chicken agribusiness was feasible because every Rp. 1- of production costs incurred would provide benefits of 1.52 IDR each

## 4. CONCLUSIONS

Based on the results of the data analysis and discussion presented, the following conclusions:

1. The operating cost of odd production years is 92,108,000 IDR. The operating cost required for 10 years is 921,080,000 IDR.
2. The production of eggs was 25.974 kg, and the selling price was 20.000 IDR/kg. The nonproductive chicken was 2.000 kg, the selling price was 22.000 IDR/kg, and the manures were 2 lumpsum/year sold @20.000.000 IDR.
3. The revenue received by the egg-laying chicken farmer was 603,474,200 IDR per two years of production, and the net profit was 419.258.200 IDR
4. NPV using a social discount rate of 18% shows that the NPV in stratum I is. 74,808,684 IDR. IRR shows a result of 21.24% using the Social Opportunity Cost of Capital (SOCC) of 18.00%. This means that IRR

was higher than the rate of return compared to SOCC, a relatively short payback period of less than 5 years. The investment issued by the farmer will be returned within 3.11 years, and Net B/C is 1.21 (greater than 1), So the business is worth running.

## REFERENCES

BPS. (2021). *Badan Pusat Statistik*.

Elpawati, E., Nugraha, A. T., & Shofiatina, R. (2018). Kelayakan Usaha Ayam Broiler (Studi pada Usaha Peternakan di Desa Cibinong). *Caraka Tani: Journal of Sustainable Agriculture*, 33(2), 96. <https://doi.org/10.20961/carakatani.v33i2.19090>

Fadhil, L. A. (2017). *Analisis Pendapatan Dan Kelayakan Usaha Perternakan Ayam Broiler ( Studi Kasus : Desa Tumpatan Nibung , Kecamatan Batang Kuis Skripsi Analisis Pendapatan Dan Kelayakan Usaha Perternakan Ayam Broiler ( Studi Kasus : Desa Tumpatan Nibung , Kecamatan Batang*. Universitas Muhammadiyah Sumatera Utara.

Febrianto, N., Putritamara, J. A., & Hartono, B. (2019). Analisis Kelayakan Usaha Peternakan Broiler di Kabupaten Malang. *Agriekonomika*, 7(2), 168. <https://doi.org/10.21107/agriekonomika.v7i2.4451>

Gani, I., & Amalia, S. (2014). Alat Analisis Data. In M. Bedata (Ed.), *Repository Unmul*. Andi.

Hasbi, & Tunggal, T. (2021). Paddy-fish integrated agricultural system to increase income and food security. *IOP Conference Series: Earth and Environmental Science*, 782(2). <https://doi.org/10.1088/1755-1315/782/2/022019>

Iskayani, Lestari, V. S., & Pakiding, W. (2016). Analisis Pendapatan Peternak Ayam Broiler Pola Kemitraan Di Desa Bontomatene Kecamatan Marusu Kabupaten Maros. *Jurnal Ilmu - Ilmu Peternakan*, 2(2), 123.

Kemendag. (2021). *Sistem Pemantauan Pasar dan Kebutuhan Pokok* (pp. 23–25).

Mappa, N., Rachmawati, & Nurfadillah. (2022). Analisis Resiko Usaha Ayam Potong Mandiri dan Alternatif Penanggulangannya. *Agrimu*, 59, 43–52.

Mi'raj, A. Arsyad, Dua, P., & Rasyid, A. a. (2021). Analisis Kelayakan Usaha Ayam Broiler di Desa Karawana Kecamatan Dolo Kabupaten Sigi ( Studi Kasus Peternakan Hj . Nigawati ) Analysis of Feasibility of Broiler Chicken Business In Karawana Village Dolo District Sigi Regency ( Livestock Case Study Hj . Ni. *Kolaboratif Sains*, 04(01), 37–43.

Oman, Jakiyah, U., & Siti Sundari, R. (2023). *Kelayakan usaha peternakan ayam broiler (Studi Kasus Peternakan Ayam Broiler di Kecamatan Sodonghilor Kabupaten Tasikmalaya)*. 16, 2023.

P.Subarkah, A., Setyawigoena, A. L., Ramadhania, C., & Narita, I. (2022). *Laporan Perekonomian Provinsi Jawa Barat*.

Purnama, A., Susilowati, S., & Suryanto, D. (2021). *Perbedaan Pola Usaha Peternakan Ayam Petelur Terhadap Kelayakan Usaha di Desa Kidal Kecamatan Tumpang Kabupaten Malang* (Vol. 4, Issue 3).

Ramadhan, B. D., Yektingingsih, E., & Sudiyarto, S. (2018). Analisis Risiko Usaha Ayam Pedaging Di Kabupaten Mojokerto. *Jurnal Ilmiah Sosio Agribis*, 18(1), 77–92. <https://doi.org/http://dx.doi.org/10.30742/jisa.v18i1.448>

Santa, N. M., Kalangi, L. S., & Wantasen, E. (2020). *Analisis Kelayakan Usaha Broiler di Kelurahan Taratara Kecamatan Tomohon* (Vol. 40, Issue 1).

Santosa, R., Sudarmadji, H., & Purwanto, Z. (2012). Analisis Kelayakan Usaha Peternakan Ayam Petelur. *Cemara*, 9(1), 1–13.

Siddiq, M., & Nur, T. M. (2023). Analisis Kelayakan Usaha Ayam Broiler Dengan Sistem Kemitraan Pada Peternakan Nurhadi Di Desa Mon Keulayu Kecamatan Gandapura Kabupaten Bireuen. *Jurnal Ilmiah Peternakan*, 11(1), 150-161.

Wirabrata, A. (2019). Anjloknya Harga Ayam Broiler. *Info Singkat Pusat Penelitian Bidang Keahlian D*, XI(No. 13/I/Puslit/Juli/2019), 19–24