Ability of mussel (Pilsbryoconcha exilis) to Reduce Organic Waste of Eel (Anguilla sp.) Rearing Activity

  • Dudi Muhammad Wildan Departemen Manajemen Sumberdaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, IPB University
  • Ridwan Affandi Departemen Manajemen Sumberdaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, IPB University
  • Niken Tunjung Murti Pratiwi Departemen Manajemen Sumberdaya Perairan, Fakultas Perikanan dan Ilmu Kelautan, IPB University
Keywords: Bioremediation, local mussel (P. exilis), organic waste, eel (Anguilla sp.)

Abstract

The release of organic waste into the waters due to the Eel (Anguilla sp.) rearing activity will cause eutrophication. Efforts to reduce organic waste can be done by using local mussel (Pilsbryoconcha exilis) because it has biofiltration capabilities. The purpose of this study was to determine the ability of local mussels in reducing organic waste. The research design used in this study was a randomized block design (RBD), with treatment in the form of differences in waste concentration (50% and 100%), while the group was in the form of differences in the size of the gravestone (small, medium, and large). The results showed that mussel was able to reduce organic matter, the effective time of local mussel (P. exilis) to reduce organic waste from the cultivation of eel (Anguilla sp.) Was in the first 6 days. The most effective treatment is the use of 100% waste concentration and small mussel. This treatment was able to reduce COD values ​​by 66.1 mg/L (28%), turbidity by 187.2 NTU (16%), TSS by 134 mg/L (36%), and ammonia by 0.004 mg/L (24%), and increased biomass by 7.21 grams (3%).  

References

Abdalla K. Z., Hammam G. (2014). Correlation between Biochemical Oxygen Demand and Chemical Oxygen Demand for Various Wastewater Treatment Plants in Egypt to Obtain the Biodegradability Indices. IJSBAR. 13 (1):42-48

Ahmed M. N., Mohamed A. S., Ahmed H. E. N. (2019). The Influence of Alkalization and Temperature on Ammonia Recovery from Cow Manure and the Chemical Properties of the Effluents. Sustainability. 11:2441. https://doi.org/10.3390/su11082441

Akeem B. D., Abdullateef A., Adenike S., Tola-Fabunmic, Ayoola O., Akinwoled. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries. 4(3): 81-88. https://doi.org/10.1016/j.aaf.2018.10.002

Akinrotimi O. A, Abu, O. M. G, Aranyo, A. A., (2011). Environmental Friendly Aquaculture Key to Sustainable Fish Farming Development In Nigeria. Journal Fisheries and Aquatic Science. 5(2): 17 – 31.

Beverigde M. C., 2004. Cage Aquaculture. Third Edition. Blackwell Publishing.

Bureau D. P., Hua K. (2010). Towards Effective Nutritional Management of Waste Outputs in Aquaculture, with Particular Reference to Salmonid Aquaculture Operations. Review article. Journal Aquaculture Research. 41: 777-792.

https://doi.org/10.1111/j.1365-2109.2009.02431.x

Campbell N. A., Reece J. B., Lisa A. Urry, Michael L. C., Steven A., Wasserman, Peter V., Minorsky, Mitchell L.G., (2005). Biology Eight Edition. San Francisco (US): Benjamin Cummings

Craig S. T., John A. H. (2008). Environmental Best Management Practices for Aquaculture. Mississippi (US): John Wiley & Sons

Daphne L. H. X., Utomo H. D., Kenneth L. Z. H. (2011). Correlation between Turbidity and Total Suspended Solids in Singapore Rivers. Journal of Water Sustainability. 1:313-322. https://doi.org/10.11912/jws.1.3.313-322

Duffy L. K., Scannell W., Phyllis K. (2007). Effects of Total Dissolved Solids on Aquatic Organisms: A Review of Literature and Recommendation for Salmonid Species. Journal of Environmental Sciences. 3(1): 1-6

Fovet O., Belaud G., Litrico X., Charpentier S., Bertrand C., Dauta A., Hugodot C. (2010). Modelling periphyton in irrigation canals. Ecological Modelling. 221: 1153-1161. https://doi.org/10.1016/j.ecolmodel.2010.01.002

Herman Y., Putu C. D., Abdullah A., Damai, Rara D., Suparmono, Defrilasio E. P., Sefia F. (2019). Effect of pilsbryoconcha exilis as organic matter removal in the aquaponic system. Jurnal Ilmu Perikanan dan Sumberdaya Perairan. 7(2). http://dx.doi.org/10.23960/aqs.v7i2.p725-734

Komarawidjaja W., (2006). Kajian Adaptasi Kijing Pilsbryoconcha exilis sebagai Langkah Awal Pemanfaatannya dalam Biofiltrasi Pencemar Organik di Perairan Waduk. Jurnal Teknik Lingkungan. 7(2): 160-165. https://doi.org/10.29122/jtl.v7i2.378

Mattjik A. A., Sumertajaya M. (2000). Perancangan Percobaan dengan Aplikasi SAS dan Minitab. IPB Press.

Muhammad A., Dwi K. P., Yudi C. (2011). Pengaruh Pemberian Pakan Buatan, Pakan Alami, dan Kombinasinya terhadap Pertumbuhan, Rasio Konservasi Pakan dan Tingkat Kelulushidupan Ikan Sidat (Anguilla bicolor). Jurnal Ilmiah Perikanan dan Kelautan. 3(1). http://dx.doi.org/10.20473/jipk.v3i1.11625

Paramita P., Maya S., Kuswytasari N. D. (2012). Biodegradasi Limbah Organik Pasar dengan Menggunakan Mikroorganisme Alami Tangki Septik. Jurnal Sains dan Seni ITS. l(1): 2301-928X

Perelo L. W. (2010). Review: In situ and Bioremediation of Organic Pollutants in Aquatic Sediments. Journal of Hazardous Materials. 177 : 81–89. https://doi.org/10.1016/j.jhazmat.2009.12.090

Sharma S. (2012). Bioremediation: Features, Strategies and Applications. Journal of Pharmacy and Life Science. 2: 2

Thomson B. M., Cressey P. J., Shaw I. C. (2003). Dietary exposure to xenoestrogens in New Zealand. Journal of environmental monitoring. 2:136-144. https://doi.org/10.1039/B211323F

Virginia A. B., Juan M. C., Iara, R., Flavia B., Carlos, M. L. (2014). Health status and bioremediation capacity of wild freshwater mussels (Diplodon chilensis) exposed to sewage water pollution in a glacial Patagonian lake. Fish & Shellfish Immunology. 37:268-277. https://doi.org/10.1016/j.fsi.2014.02.013

Published
02-06-2021
How to Cite
Wildan, Dudi, Ridwan Affandi, and Niken Pratiwi. 2021. “Ability of Mussel (Pilsbryoconcha Exilis) to Reduce Organic Waste of Eel (Anguilla Sp.) Rearing Activity”. Musamus Fisheries and Marine Journal, June, 1-14. https://doi.org/10.35724/mfmj.v0i0.3532.
Section
Article