SIMULASI PERFORMA AERODINAMIKA NACA 1408 PADA APLIKASI TURBIN ANGIN DENGAN VARIASI PANJANG GURNEY FLAP
Abstract
Airfoil merupakan bagian dari turbin angin yang memiliki fungsi untuk mengubah energi angin menjadi gaya. Performa aerodinamika airfoil akan mempengaruhi efisiensi turbin angin secara keseluruhan. Salah satu cara untuk meningkatkan performa aerodinamika airfoil adalah dengan menambahkan gurney flap (GF). Pada penelitian ini dilakukan simulasi airfoil NACA 1408 dengan penambahan GF yang panjangnya divariasikan antara 0,12-0,21%c pada sudut serang 0o. Hasil simulasi dengan software Simflow menunjukkan bahwa nilai Cl/Cd tertinggi dihasilkan pada panjang GF 0,18%c yaitu sebesar 20,185. Selain nilai Cd, Cl, dan Cl/Cd, juga dihasilkan visualisasi distribusi kecepatan dan tekanan udara yang melewati airfoil. Dari hasil visualisasi tersebut terlihat bahwa hasil simulasi sesuai dengan Hukum Bernoulli, yaitu kecepatan bagian bawah airfoil lebih rendah dari bagian atasnya, yang mengakibatkan tekanan bagian bawah lebih tinggi dari bagian atasnya, sehingga menghasilkan gaya angkat (lift force).
Kata kunci: Turbin angin, airfoil, NACA 1408, simulasi, Cl/Cd
References
[2] Hamid, H., & Abd El Maksoud, R. M. (2023). A comparative examination of the aerodynamic performance of various seashell-shaped wind turbines. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e17036
[3] Xie, P., Shi, X., & Jiang, Z. (2023). Investigation of lightning attachment characteristics of wind turbine blades with different receptors. Energy Reports, 9, 618–626. https://doi.org/10.1016/j.egyr.2023.05.085
[4] Sharma, P., Gupta, B., Pandey, M., Sharma, A. K., & Nareliya Mishra, R. (2021). Recent advancements in optimization methods for wind turbine airfoil design: A Review. Materials Today: Proceedings, 47, 6556–6563. https://doi.org/10.1016/j.matpr.2021.02.231
[5] Hao, L.-S., & Gao, Y.-W. (2019). Effect of gurney flap geometry on a S809 airfoil. International Journal of Aerospace Engineering, 2019, 1–8. https://doi.org/10.1155/2019/9875968
[6] Wang, J. J., Li, Y. C., & Choi, K.-S. (2008). Gurney flap—lift enhancement, mechanisms and applications. Progress in Aerospace Sciences, 44(1), 22–47. https://doi.org/10.1016/j.paerosci.2007.10.001
[7] Cole, J., Vieira, B., Coder, J., Premi, A., & Maughmer, M. (2011). An experimental investigation into the effect of gurney flaps on various airfoils. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. https://doi.org/10.2514/6.2011-1250
[8] Myose, R., Papadakis, M., Heron, I., Myose, R., Papadakis, M., & Heron, I. (1997). A parametric study on the effect of gurney flaps on single and multielement airfoils, three-dimensional wings, and reflection plane model. 35th Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1997-34
[9] Nikoueeyan, P., Strike, J. A., Magstadt, A., Hind, M., & Naughton, J. W. (2014). Characterization of the aerodynamic coefficients of a wind turbine airfoil with a gurney flap for flow control applications. 32nd AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2014-2146
[10] He, X., Wang, J., Yang, M., Ma, D., Yan, C., & Liu, P. (2017). Numerical simulation of gurney flaps lift-enhancement on a low Reynolds number airfoil. Science China Technological Sciences, 60(10), 1548–1559. https://doi.org/10.1007/s11431-017-9085-4
[11] Bianchini, A., Balduzzi, F., Di Rosa, D., & Ferrara, G. (2019). On the use of gurney flaps for the Aerodynamic Performance Augmentation of Darrieus Wind Turbines. Energy Conversion and Management, 184, 402–415. https://doi.org/10.1016/j.enconman.2019.01.068