ANALISIS EXERGY TERHADAP UNJUK KERJA PANEL SURYA TIPE MONOCRYSTALINE 50 WATT

  • Nurjannah Yusman Universita Musamus
  • Dinar Rezky Pratama Universitas Musamus
  • Farid Sariman Universitas Musamus
  • Daniel Parenden Universitas Musamus
  • Mustofa Universitas Tadulako
  • Hariyanto Universitas Musamus
Keywords: Exergy, Energy, Efesiensi, Monokristalin

Abstract

Energi Surya adalah energi yang ramah lingkungan dan sangat potensial untuk dimanfaatkan dalam kehidupan sehari-hari. Salah satu pemanfaatannya dengan menggunakan panel surya. Penelitian ini bertujuan  untuk  menganalisis exergy terhadap unjuk kerja panel surya tipe monocrystaline 50 watt. Metode yang digunakan adalah analisis teoritis untuk mengetahui besar exergy yang dihasilkan oleh panel surya. Pengujian dilakukan langsung dibawah sinar matahari dengan sudut datang matahari tegak lurus dengan permukaan panel surya. Performa dari panel surya dianalisis dengan mengambil data arus, tegangan, daya dan efesiensi sebagai data awal untuk melakukan analisis exergy. Hasil analisis perhitungan menunjukan bahwa peningkatan intensitas penyinaran matahari akan meningkatkan exergy keluaran dan exergy input namun menghasilkan rugi-rugi exergy yang lebih besar daripada exergy termal dan exergy listrik yang dihasilkan. Tegangan yang dihasilkan cukup baik dan konstan, namun arus yang dihasilkan kurang optimal dan masih fluktuatif. Arus dan tegangan sangat mempengaruhi daya keluaran, Efisiensi energi yang dihasilkan jauh lebih kecil dan berfluktuasi, berkisar antara 9 % hingga 10.87%. Sebaliknya, efisiensi exergy cukup besar dan berfluktuasi berkisar antara 24,21% hingga 43,48%.

Kata Kunci: Exergy, Energy, Efesiensi, monokristalin

References

[1] A. O. M. Maka and J. M. Alabid, “Solar energy technology and its roles in sustainable development,” Clean Energy, vol. 6, no. 3, pp. 476–483, 2022, doi: 10.1093/ce/zkac023.
[2] R. P. Merchán, M. J. Santos, A. Medina, and A. Calvo Hernández, “High temperature central tower plants for concentrated solar power: 2021 overview,” Renew. Sustain. Energy Rev., vol. 155, p. 111828, 2022, doi: 10.1016/j.rser.2021.111828.
[3] A. S. Al-Ezzi and M. N. M. Ansari, “Photovoltaic Solar Cells: A Review,” Appl. Syst. Innov., vol. 5, no. 4, pp. 1–17, 2022, doi: 10.3390/asi5040067.
[4] R. A. Messenger, Photovoltaic Systems Engineering. 2018.
[5] P. G. V. Sampaio and M. O. A. González, “Photovoltaic solar energy: Conceptual framework,” Renew. Sustain. Energy Rev., vol. 74, no. June 2016, pp. 590–601, 2017, doi: 10.1016/j.rser.2017.02.081.
[6] M. G. Sekhar, K. Upendra, P. Kamalakar, and T. Sanjeevarao, “Solar Photovoltaic Technology for Industrial and Domestic Applications,” vol. 1, no. 2, pp. 56–58, 2017.
[7] T. Pavlovic, The Sun and Photovoltaic Technologies. 2020.
[8] R. Binur, “Komposisi jenis ikan air tawar di daerah lahan basah Kaliki, Merauke Papua [ Freshwater fishes composition at wetland of Kaliki , Merauke Papua ] Robi Binur Jurnal Iktiologi Indonesia,” Iktiologi Indones., vol. 10, no. 2, pp. 165–178, 2010.
[9] P. H. V. S. T. Sai, J. V. R. Rao, K. C. Devarayapalli, and K. V Sharma, “Preparation and Characterization of TiO 2 -SiO 2 Sol-Gel Anti Reflection Coatings on Multi Crystalline Silicon Solar Cell,” no. 1, pp. 396–399, 2013.
[10] H. Kridalaksana, Pembentukan Kata Dalam Bahasa Indonesia. Jakarta: Gramedia Pustaka Utama, 2001.
[11] Gratzel Michael, “Photoelectrochemical cells,” Nature, vol. 414, no. November, pp. 338–334, 2001, doi: 10.1201/b19148.
[12] H. Hariyanto, M. Mustofa, Z. Djafar, and W. H. Piarah, “Mathematical Modeling in Combining Photovoltaic and Thermoelectric Generator using a Spectrum Splitter,” EPI Int. J. Eng., vol. 2, no. 1, pp. 74–79, 2019, doi: 10.25042/epi-ije.022019.13.
[13] D. Parenden and Hariyanto, “Simulation of photovoltaic concentration with Fresnel lens using Simulink MATLAB,” Eur. J. Electr. Eng., vol. 21, no. 2, pp. 223–227, 2019, doi: 10.18280/ejee.210214.
[14] W. H. Piarah, Z. Djafar, Hariyanto, and Mustofa, “A new simulation of photovoltaic and thermoelectric generator hybrid system with a beam splitter cold and hot mirror for low intensity,” Int. Rev. Mech. Eng., vol. 13, no. 9, pp. 559–567, 2019, doi: 10.15866/ireme.v13i9.17884.
[15] W. Xiao, Photovoltaic Power System. 2017.
[16] A. K. Pandey, P. C. Pant, O. S. Sastry, A. Kumar, and S. K. Tyagi, “Energy and exergy performance evaluation of a typical solar photovoltaic module,” Therm. Sci., vol. 19, pp. S625–S636, 2015, doi: 10.2298/TSCI130218147P.
[17] P. Rawat, “Exergy Performance Analysis of 300 W Solar Photovoltaic Module,” vol. 6, no. 3, pp. 381–390, 2017, doi: 10.5281/zenodo.438094.
[18] F. A. Kareem, D. Z. Khalaf, N. S. Lafta, and Y. A. Lateef, “Energy and exergy analysis of a solar photovoltaic performance in Baghdad,” J. Mech. Eng. Res. Dev., vol. 42, no. 2, pp. 44–49, 2019, doi: 10.26480/jmerd.02.2019.44.49.
[19] Hariyanto, D. Parenden, C. W. Wullur, and F. Sariman, “Exergy Modeling of Monocrystalline Silicon Solar Cells with Spectral Irradiation Variations,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1125, no. 1, p. 012117, 2021, doi: 10.1088/1757-899x/1125/1/012117.
[20] S. Ahmed, N. Diene, K. Diouma, E. B. Menny, and B. Sidi, “Energy and exergy analysis of a solar photovoltaic module performance under the Sahelian Environment,” Int. J. Phys. Sci., vol. 13, no. 12, pp. 196–205, 2018, doi: 10.5897/ijps2018.4739.
[21] H. Hariyanto et al., “The Analysis of Energy and Exergy Performance of Dye-Sensitized Solar Cell Using Red Fruit (Pandanus Conoideus) as an Absorbent Medium,” Int. J. Heat Technol., vol. 40, no. 1, pp. 9–16, 2022, doi: 10.18280/ijht.400102.
Published
2023-07-30
How to Cite
Yusman, N., Pratama, D. R., Sariman, F., Parenden, D., Mustofa, & Hariyanto. (2023). ANALISIS EXERGY TERHADAP UNJUK KERJA PANEL SURYA TIPE MONOCRYSTALINE 50 WATT. MUSTEK ANIM HA, 12(01), 64-70. https://doi.org/10.35724/mustek.v12i01.5417