The land cover change modeling based Artificial Neural Network (ANN) of mangroves in Teluk Bintuni Regency

  • Awalludin Ramdhan Universitas Negeri Papua
  • Obed N Lense Universitas Negeri Papua
  • Renny Purnawaty Universitas Negeri Papua
Keywords: Artificial Neural Network, Mangrove, Carbone storage, Land cover change modeling

Abstract

This study discusses mangrove forest land cover change in Teluk Bintuni Regency using Artificial Neural Network (ANN) modeling. Bintuni Bay has one of the largest mangrove ecosystems in the world, covering more than 220,000 hectares, making it critical for carbon storage and climate change mitigation. This study used geospatial data from the Indonesian Ministry of Environment and Forestry, combined with drivers such as distance from roads, settlements, rivers, and topography. The ANN model achieved high accuracy with a kappa index of 0.94 and an overall accuracy of 95.85%. The model predicted changes in mangrove cover between 2022 and 2030. The area of primary mangrove forest is projected to decrease by 10.29%, while secondary mangrove forest increases by 5.36%. The analysis reveals alarming impacts on carbon stocks. Total carbon stocks are expected to decrease by 6.51% or by 2,206,344.54 Mg C from 2022 to 2030. These findings highlight the need for targeted conservation strategies in the Bintuni Bay mangrove ecosystem. Projected changes not only affect carbon storage but also impact biodiversity, habitat quality, and ecosystem services, emphasizing the importance of effective management practices to sustain these globally important mangrove forests.

References

Abbas, Z., Yang, G., Zhong, Y., & Zhao, Y. (2021). Spatiotemporal Change Analysis and Future Scenario of LULC Using the CA-ANN Approach: A Case Study of the Greater Bay Area, China. LAND, 10, 584. doi : https://doi.org/10.3390/land10060584.

Arebo, B., & Inayah. (2023, September 20). MENINGKATKAN PARTISIPASI MASYARAKAT TELUK BINTUNI DALAM MENGELOLA PERIKANAN SECARA BERKELANJUTAN. Retrieved Januari 9, 2025, from WWF: http://www.wwf.id/id/blog/meningkatkan-partisipasi-masyarakat-teluk-bintuni-dalam-mengelola-perikanan-secara

Badan Pusat Statistik [BPS]. (2024). Kabupaten Teluk Bintuni dalam angka (Vol. 18). Teluk Bintuni: BPS Kabupaten Teluk Bintuni.

Bufedo, B., & Elias, E. (2021). Land Use/Land Cover Change and Its Driving Forces in Shenkolla Watershed, South Central Ethiopia. ScientificWorldJournal, 9470918, doi : 10.1155/2021/9470918.

Buğday, E., & Buğday, S. E. (2019). Modeling and simulating land use/cover change using artificial neural network from remotely sensing data. CERNE, 25(2), 246-254. doi : 10.1590/01047760201925022634.

Bukoski, J., Dronova, I., & Potts, M. (2022). Net loss statistics underestimate carbon emissions from mangrove land use and land cover change. Ecography, 2022 (4)(Restoration Special Issue), doi: 10.1111/ecog.05982.

Choudhary, B., Dhar, V., & Pawase, A. S. (2024). Blue carbon and the role of mangroves in carbon sequestration: Its mechanisms, estimation, human impacts and conservation strategies for economic incentives. Journal of Sea Research, 199, 102504. DOI: 10.1016/j.seares.2024.102504.

Dewiyanti, I., Khairina, K., & El-Rahimi, S. A. (2024). Carbon stock estimation of mangrove ecosystem in the Kuta Raja Subdistrict, Banda Aceh. ICFAES 2023. 87, p. 02008. https://doi.org/10.1051/bioconf/20248702008. Aceh: BIO Web of Conferences.

Ditjen PDASRH. (2021). Peta Mangrove Nasional Tahun 2021. Jakarta: Direktorat Konservasi Tanah dan Air, Ditjen PDASRH.

Febianti, V., Sasmito, B., & Bashit, N. (2022). Pemodelan perubahan tutupan lahan berbasis penginderaan jauh (Studi kasus : Kota Semarang). Jurnal Geodesi UNDIP, 11(3), 1-10. https://doi.org/10.14710/jgundip.2022.36939

Gandhi, Y., Hardiono, M., Rahawarin, Y., Nugroho, J., & Manusawai, J. (2008). Interpretation of Mangrove Ecosystem Dynamic in Bintuni Bay Nature Reserve Using Geographic Information System. Biodiversitas, 9 (2), 156-159. DOI: 10.13057/biodiv/d090216.

Ghorbanian, A., Ahmadi, S. A., Amani, M., Mohammadzadeh, A., & Jamali, S. (2022). Application of Artificial Neural Networks for Mangrove Mapping Using Multi-Temporal and Multi-Source Remote Sensing Imagery. Water, 14 (2), 244. https://doi.org/10.3390/w14020244.

Hidayah, Z., Rachman, H., & As-Syakur, A. (2022). Mapping of Mangrove Forest and Carbon Stock Estimation of East Coast Surabaya, Indonesia. Biodiversitas, 23(9), 4826-4837. DOI : 10.13057/biodiv/d230951.

Hutchison, J., Spalding, M., & Ermgassen, P. (2014). The role of mangroves in fisheries enhancement. The Nature Conservancy and Wetland International.

Idris, R., & Saleh, M. T. (2024). Remote Sensing and GIS-Based LULC Prediction in Shah Alam: A Strategy for Sustainable Urban Growth and Development. Bioresources and Environment, 2(3), 85-96. Retrieved from https://bioenvuitm.com/index.php/en/article/view/71

Kasihiw, P., Bawole, R., Marwa, J., Murdjoko, A., Wihyawari, A., Heipon, Y., et al. (2023). Floristic richness and diversity of Bintuni mangrove, Bird's Head Peninsula, West Papua, Indonesia. BIODIVERSITAS, 24. No 5, 2887-2897. doi : 10.13057/biodiv/d240543.

Kasihiw, P., Bawole, R., Marwa, J., Murdjoko, A., Wihyawari, A., Heipon, Y., et al. (2024). Mangrove Distribution to Support Biodiversity Management in Teluk Bintuni District, West Papua, Indonesia. Biodiversitas, 25(2), 644-653. doi : 10.13057/biodiv/d250223.

Kim, Y., Newman, G., & Güneralp, B. (n.d.). A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models. Land, 9(8), 246. https://doi.org/10.3390/land9080246.

Larekeng, S., Nursaputra, M., Mappiasse, M., Ishak, S., Basyuni, M., Sumarga, E., et al. (2024). Estimation of mangrove carbon stocks using unmanned aerial vehicle over coastal vegetation. Global J. Environ. Sci. Manage, 10 (3), 1133-1150. doi : 10.22034/gjesm.2024.03.13.

Muhammad, R., Zhang, W., Abbas, Z., Guo, F., & Gwiazdzinski, L. (2022). Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China. Land, 11, 419. DOI : https://doi.org/10.3390/land11030419.

Murdiyarso, D., Sasmito, S., Sillanpää, M., MacKenzie, R., & Gaveau, D. (2021). Mangrove selective logging sustains biomass carbon recovery, soil carbon, and sediment. Scientifc Reports, 11:12325, https://doi.org/10.1038/s41598-021-91502-x.

Pham, T. D., Yokoya, N., Nguyen, T. T., Le, N. N., Ha, N. T., Xia, J., et al. (2020). Improvement of Mangrove Soil Carbon Stocks Estimation in North Vietnam Using Sentinel-2 Data and Machine Learning Approach. GIScience & Remote Sensing, 58(1), 68-87. https://doi.org/10.1080/15481603.2020.1857623.

Direktorat Pencegahan Perubahan Iklim [DIRJEN PPI]. (2022). National reference level for deforestation, forest degradation, and enhancement of forest carbon stock. Jakarta: DIRJEN PPI.

Rahmawaty, R., Rauf, A., Harahap, M. M., & Kurniwan, H. (2022). Land cover change impact analysis: an integration of remote sensing, GIS and DPSIR framework to deal with degraded land in Lepan Watershed, North Sumatra, Indonesia. Biodiversitas, 23(6), 3000-3011. https://doi.org/10.13057/biodiv/d230627 .

Sasmito, S., Sillanpää, M., Hayes, M., Bachri, S., Saragi-Sasmito, M., Sidik, F., et al. (2020). Mangrove Blue Carbon Stocks and Dynamics are Controlled by Hydrogeomorphic Settings and Land-use Change. Global Change Biology, 26(5), 3028-3039. doi : 10.1111/gcb.15056

Sasmito, S., Taillardat, P., Clendenning, J., Cameron, C., Friess, D., Murdiyarso, D., et al. (2019). Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Global Change Biology, 25 (12), 4291-4302. doi: 10.1111/gcb.14774.

Sim, J., & Wright, C. (2005). The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Physical Therapy, 85(3), 257–268 : https://doi.org/10.1093/ptj/85.3.257.

Yudha, R. P. (2021). Forest Structure of 26 Year old Planted Mangroves. Journal Sylva Lestari, 04 (2), 61-69. DOI: https://doi.org/10.32734/jsi.v4i02.5680 .

Yudha, R. P., Solehudin, Wahyudi, & Sillanpää, M. (2022). The Dynamics of Secondary Mangrove Forests in Bintuni Bay, West Papua after Harvested on the First 30-Year Rotation Cycle. Jurnal Sylva Lestari, 10(1), 83-106. DOI : https://doi.org/10.23960/jsl.v10i1.575.

Zhang, J., Yang, J., Liu, P., Liu, Y., Zheng, Y., Shen, X., et al. (2024). Effects of Land Use/Cover Change on Terrestrial Carbon Stocks in the Yellow River Basin of China from 2000 to 2030. Remote Sensing, 16(10), 1810. https://doi.org/10.3390/rs16101810.

Published
2025-02-01
How to Cite
Ramdhan, A., Lense, O. N., & Purnawaty, R. (2025). The land cover change modeling based Artificial Neural Network (ANN) of mangroves in Teluk Bintuni Regency. AGRICOLA, 15(1), 11-20. https://doi.org/10.35724/ag.v15i1.6572
Section
Artikel