Evaluation of soil quality of irrigated and rainfed rice fields In Maginti District, West Muna Regency

  • Darwis Suleman Universitas Halu Oleo
  • Syamsu Alam
  • La Ode Rustam
  • Agus Setiawan

Abstract

The decrease of soil quality as a result of anthropogenic activities is one of the challenges in achieving the sustainable plant productivity. Therefore, the analysis of physical, chemical and biological characters of soil needs to be carried out periodically in order to assess the changes in soil quality. Hence, several physical and chemical attributes of soil have been evaluated to determine soil quality of irrigated and rainfed rice fields as well as providing management directives to improve the soils in Maginti District, West Muna Regency. This study was performed in the form of a survey in which sample points were determined purposively for 2 types of land use, namely irrigated and rainfed rice fields. Six soil sample were collected from irrigated paddy fields, meanwhile in rainfed rice fields 3 soil samples were taken and each sample point consisted of 4 subsamples and then composited, so that 9 composite samples were obtained. The variables observed included: soil texture, pH, organic C, and total N, as well as P and available K. The results revealed that several chemical properties of irrigated soil were higher than in rainfed rice fields, such as soil pH (6.3), organic C (0.99%), total N (0.27%), and available P (40.54 kg ha-1), while available K was low (72.2 kg ha-1). The soil quality index of irrigated and rainfed rice fields was 0.56 (medium) and 0.36 (low), respectively, with the main limiting factor being the low organic C levels, especially in rainfed rice fields. Therefore, to improve soil quality, it is highly recommended to combine inorganic and organic fertilizers to maintain sustainable soil fertility.

References

Aggarwal, P. K., Hebbar, K. B., Venugopalan, M. V., Rani, S., Bala, A., & Wani, S.P. (2008). Quantification of yield Gap in rain-fed rice, wheat, cotton, and mustard in India. Global Theme on Aggroecosystems Report No. 43. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for The Semi-Arid Tropics. 36 pages. http://oar.icrisat.org/id/eprint/2335

Angelova, V. R., Akova, V.I., Artinova, N. S. & Ivanov, K. I. (2013). The Effect of Organic Amendments on Soil Chemical Characteristics. Bulgarian Journal of Agricultural Science, 19(5); 958-971.

Al-Silevany, B. S. H & Mehmedany, L. A. M. (2023). The Effect of Wetting and Drying Cycles on Potassium Release in Three Soil Orders. J. Ecol. Eng. 24(1):218-226. doi:10.12911/22998993/156055

Badan Pusat Statistik. (2021). Kabupaten Muna Barat dalam Angka 2021. Badan Pusat Statistik Muna Barat. (di unduh 25 Maret 2024)

Badan Pusat Statistik. (2022). Survei Sosial Ekonomi Nasional (di unduh 23 Desember 2024)

Badan Pusat Statistik, (2023). Luas Sawah Baku Indonesia. Di unduh pada tanggal 1 Februari 2024. https://www.bps.go.id/id/pressrelease/2023/03/01/2036 (di unduh 2 April 2024)

Blanco-Canqui, H. and Lal, R. (2008). No-Tillage and Soil-Profile Carbon Sequestration: An On-Farm Assessment. Soil & Water Management & Conservation. 72 (3);693-701. https://doi.org/10.2136/sssaj2007.0233

Ding, C., Du, S., Ma, Y., Li, X., Zhang, T., & Wang, X. (2019). Changes in the pH of paddy soils after flooding and drainage: Modeling and validation. Geoderma, 337, 511–513. doi:10.1016/j.geoderma.2018.10.012

Garnaik, S., Samant, P.K., Mandal, M., Mohanty, T.R., Dwibedi, S.K., Patra, R.K., Mohapatra, K.K., Wanjari, R.H., Sethi, D., Sena, D.R., Sapkota, T.B., Nayak, J., Patra, S., Parihar, C.M. & Nayak, H.S. (2022). Untangling the effect of soil quality on rice productivity under a 16-years long-term fertilizer experiment using conditional random forest. Computers and Electronics in Agriculture.197, 106965. doi: 10.1016/j.compag.2022.106965

Ghimire, P., Bhatta, B., Pokhrel, B., Sharma, B., & Shrestha, I. (2018). Assessment of Soil Quality for Different Land Uses in the Chure Region of Central Nepal, Jurnal of Agriculture and Natural Resources. 1(1): 32-42.

Kasno A., Rostaman, T. & Setyorini, D. (2016). Peningkatan produktivitas lahan sawah tadah hujan dengan pemupukan hara N, P, dan K dan penggunaan padi varietas unggul. Jurnal Tanah dan Iklim. 40(2): 147-157.

Karlen, D.L. (2004). Soil quality as an indicator of sustainable tillage practices. Soil and Tillage Research, 78(2), 129- 130. doi:10.1016/j.still.2004.02.001

Kemala, N., Supriadi, & Sabrina, T. (2017). Pemetaan C-Organik Di Lahan Sawah Daerah Irigasi Pantoan Kecamatan Siantar Kabupaten Simalungun. Jurnal Agroekoteknologi FP USU. 5(3): 729- 739

Kopittkea, P.M., Menziesa, N.W., Wang, P., McKennaa, B.A, & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International. 132, 105078. doi:10.1016/j.envint.2019.105078.

Kong F., Zhang, X., Zhu, Y., Yang, H. & Li, F. (2022). Alternate Wetting and Drying Irrigation Reduces P Availability in Paddy Soil Irrespective of Straw Incorporation. Agronomy, 12(7), 1718. doi:10.3390/agronomy12071718

Lima, A.C.R., Hoogmoed, W., Brussaard, L., 2008. Soil quality assessment in rice production systems: establishing a minimum data set. J. Environ. Qual. 37, 623–630.

Linh, T.B., Sleutel, S., Vo Thi, G., Le Van, K. & Cornelis, W.M. (2015). Deeper Tillage and Root Growth in Annual Rice-Upland Cropping Systems Result in Improved Rice Yield and Economic Profit Relative to Rice Monoculture. Soil Tillage Res. 154, 44–52.

Linh, T.B., Le Van, K., Van Elsacker, S. & Cornelis, W.M. (2016). Effect of Cropping System on Physical Properties of Clay Soil Under Intensive Rice Cultivation. Land Degrad Dev. 27, 973–982.

Liu, Z., Cao, S., Sun, Z., Wang, H., Qu, S., Lei, N., He, J. & Dong, Q. (2021). Tillage effects on soil properties and crop yield after land reclamation, Scientific Reports. 11(1):4611. doi: 10.1038/s41598-021-84191-z.

Li, Y., Zheng, J., Wu, Q., & Gong, X. (2022). Zeolite increases paddy soil potassium fixation, partial factor productivity, and potassium balance under alternate wetting and drying irrigation. Agricultural Water Management. 260:107294 doi:10.1016/j.agwat.2021.107294

Mangera, Y., Wahida, W., & Yesnat, C. (2022). Evaluasi kesesuaian lahan untuk komoditi padi, jagung dan bawang merah pada lahan bukaan baru di Kampung Bokem Distrik Merauke. Agricola, 12(1), 49-57.

Mausbach, M.J, & Seybold, C.A. (1998). Assessment of Soil Quality. Dalam R. Lal (ed). Soil Quality and Agricultural Sustainability. Ann Arbor Press, Chelsea, Michigan, pp.33-43.

Mbuthia, L.W., Acosta-Martínez, V., DeBruyn, J., Schaeffer, S., Tyler, D., Odoi, E., Mpheshea, M., Walker, F. & Eash, N. (2015). Long Term Tillage, Cover Crop, and Fertilization Effects on Microbial Community Structure, Activity: Implications for Soil Quality. Soil Biol. Biochem. 89, 24–34.

Mekkaoui, A.E., Moussadek, R., Mrabet, R., Douaik, A., El Haddadi, R., Bouhlal, O., Elomari, M., Ganoudi, M., Zouahri, A., and Said Chakiri. (2023). Effects of Tillage Systems on the Physical Properties of Soils in a Semi-Arid Region of Morocco. Agriculture, 13(3), 683; doi:10.3390/agriculture13030683

Mousavi, S.F., Yousefi-Moghadam, S., Mostafazadeh-Fard, B., Hemmat, A. & Yazdani, M.R. (2009). Effect of puddling intensity on physical properties of a silty clay soil under laboratory and field conditions. Paddy Water Environ (2009) 7:45–54. doi: 10.1007/s10333-008-0148-4

Rawls, W.J., Nemes, A., & Pachepsky, Y. (2004). Effect of soil organic carbon on soil hydraulic properties. Development in Soil Science. 30: 95-114. doi:10.1016/S0166-2481(04)30006-1

Six, J., Elliott, E.., & Paustian, K. (2000). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32(14), 2099–2103. doi:10.1016/s0038-0717(00)00179-6

Suriyagoda, L. D. B., Ryan, M. H., Renton, M., & Lambers, H. (2014). Plant Responses to Limited Moisture and Phosphorus Availability. Advances in Agronomy, 143–200. doi:10.1016/b978-0-12-800138-7.00004-8

Suratman, Y.Y.A. 2020. Produktivitas dan Pendapatan Usahatani Padi Sawah Tadah Hujan di Kelurahan Cempaka Kota Banjarbaru. Rawa Sains: Jurnal Sains STIPER Amuntai. 10(2), 87-94. doi:10.36589/rs.v10i2.136

Tommy, A., Mukhlis, & Hidayat, B. (2014). Karakteristik Biologi dan Kimia Tanah Sawah akibat Pembakaran Jerami. Jurnal Online Agroekoteknologi, 2(2): 851 - 864

Tuong, T.P., Kam, S.P., Wade, L., Pandey, S., Bouman, B.A.M. & Hardy, B. (Eds.). (2000). Characterizing and understanding rainfed environments. Proceedings of the International Workshop on Characterizing and Understanding Rainfed Environments. Bali, Indonesia. doi: 10.22004/ag.econ.281829

Wade, L.J., Fukai, S., Samson, B.K., Ali, A. & Mazid, M.A. (1999). Rainfed lowland rice: physical environment and cultivar requirements. Field Crops Res. 64(1-2): 3–12. doi:10.1016/S0378-4290(99)00047-7

Walkely, A., & Black, C.A. (1934). An examination of the Degtjareff method for determining soil organik matter, and a proposed modification of the chromic acid titration method. Soil science, 37, 29–38

Wibowo, H. & Kasno, A. (2021). Soil organic carbon and total nitrogen dynamics in paddy soils on the Java Island, Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 648 012192.

Widyantoro dan Toha, H.M. (2010). Optimalisasi Pengelolaan Padi sawah Tadah Hujan melalui Pendekatan Pengelolaan Tanaman Terpadu. Prosiding Pekan Serealia Nasional 2010. Balitsereal. Maros.

Published
2026-02-12
How to Cite
Suleman, D., Alam, S., Rustam, L. O., & Setiawan, A. (2026). Evaluation of soil quality of irrigated and rainfed rice fields In Maginti District, West Muna Regency. AGRICOLA, 16(1), 1-8. https://doi.org/10.35724/ag.v16i1.7106
Section
Artikel